Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Bone Miner Res ; 39(2): 85-94, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38477745

RESUMO

Type 1 diabetes mellitus (T1DM) has been linked to increased osteocyte apoptosis, local accumulation of mineralized lacunar spaces, and microdamage suggesting an impairment of the mechanoregulation network in affected individuals. Diabetic neuropathy might exacerbate this dysfunction through direct effects on bone turnover, and indirect effects on balance, muscle strength, and gait. However, the in vivo effects of impaired bone mechanoregulation on bone remodeling in humans remain underexplored. This longitudinal cohort study assessed consenting participants with T1DM and varying degree of distal symmetric sensorimotor polyneuropathy (T1DM, n = 20, median age 46.5 yr, eight female) and controls (CTRL; n = 9, median age 59.0 yr, four female) at baseline and 4-yr follow-up. Nerve conduction in participants with T1DM was tested using DPNCheck and bone remodeling was quantified with longitudinal high-resolution peripheral quantitative-computed tomography (HR-pQCT, 82 µm) at the standard distal sites. Local trabecular bone formation (Tb.F) and resorption (Tb.R) sites were captured by implementing 3D rigid image registration of HR-pQCT images, and the mechanical environment across the bone microarchitecture at these sites was simulated using micro-finite element analysis. We calculated odds ratios to determine the likelihood of bone formation (ORF) and resorption (ORR) with increasing/decreasing strain in percent as markers for mechanoregulation. At the distal radius, Tb.F was 47% lower and Tb.R was 59% lower in T1DM participants compared with CTRL (P < .05). Tb.F correlated positively with nerve conduction amplitude (R = 0.69, P < .05) in participants with T1DM and negatively with glycated hemoglobin (HbA1c) (R = -0.45, P < .05). Additionally, ORF was 34% lower and ORR was 18% lower in T1DM compared with CTRL (P < .05). Our findings represent in vivo evidence suggesting that bone remodeling in individuals with T1DM is in a state of low responsiveness to mechanical stimuli, resulting in impaired bone formation and resorption rates; these correlate to the degree of neuropathy and level of diabetes control.


In a healthy adult, the body's skeleton self-repairs­or remodels­itself to maintain its strength. At the microscopic level, this process is orchestrated by cells, called osteocytes, which can sense and respond to local mechanical forces. Recent studies have suggested that type 1 diabetes mellitus (T1DM), a metabolic bone disease, may negatively impact this mechanically regulated process and reduce bone strength. To investigate this further, we utilized novel methods to monitor local changes in bone microstructure over time using high­resolution peripheral quantitative­computed tomography, allowing us to study the results of cellular behavior on bone remodeling in participants over time. Our study found that bone formation was 47% lower and bone resorption was 59% lower in participants with T1DM compared with controls (CTRL). Bone formation correlated positively with peripheral nerve function and negatively with glycaemic control in participants with T1DM. Furthermore, the links between mechanical forces acting on bone remodeling were 34% weaker for formation and 18% weaker for resorption compared with CTRL. Our findings show that bone remodeling in people with T1DM is in a state of low responsiveness to mechanical stimuli, resulting in impaired bone formation and resorption rates, and ultimately, impaired self-repair.


Assuntos
Remodelação Óssea , Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/complicações , Feminino , Pessoa de Meia-Idade , Masculino , Adulto
2.
Bone ; 176: 116893, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37666441

RESUMO

BACKGROUND: Recent applications of high-resolution peripheral quantitative computed tomography (HR-pQCT) have demonstrated that changes in local bone remodelling can be quantified in vivo using longitudinal three-dimensional image registration. However, certain emerging applications, such as fracture healing and joint analysis, require larger multi-stack scan regions that can result in stack shift image artifacts. These artifacts can be detrimental to the accurate alignment of the bone structure across multiple timepoints. The purpose of this study was to establish a multi-stack registration protocol for evaluating longitudinal HR-pQCT images and to assess the accuracy and precision error in comparison with measures obtained using previously established three-dimensional longitudinal registration. METHODS: Three same day multi-stack HR-pQCT scans of the radius (2 stacks in length) and tibia (3 stacks in length) were obtained from 39 healthy individuals who participated in a previous reproducibility study. A fully automated multi-stack registration algorithm was developed to re-align stacks within a scan by leveraging slight offsets between longitudinal scans. Stack shift severity before and after registration was quantified using a newly proposed stack-shift severity score. The false discovery rate for bone remodelling events and precision error of bone morphology and micro-finite element analysis parameters were compared between longitudinally registered scans with and without the addition of multi-stack registration. RESULTS: Most scans (82 %) improved in stack alignment or maintained the lowest stack shift severity score when multi-stack registration was implemented. The false discovery rate of bone remodelling events significantly decreased after multi-stack registration, resulting in median false detection of bone formation and resorption fractions between 3.2 to 7.5 % at the radius and 3.4 to 5.3 % at the tibia. Further, precision error was significantly reduced or remained unchanged in all standard bone morphology and micro-finite element analysis parameters, except for total and trabecular cross-sectional areas. CONCLUSION: Multi-stack registration is an effective strategy for accurately aligning multi-stack HR-pQCT scans without modification of the image acquisition protocol. The algorithm presented here is a viable approach for performing accurate morphological analysis on multi-stack HR-pQCT scans, particularly for advanced application investigating local bone remodelling in vivo.


Assuntos
Algoritmos , Artefatos , Humanos , Reprodutibilidade dos Testes , Cintilografia , Remodelação Óssea
3.
Bone ; 172: 116780, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37137459

RESUMO

Local mechanical stimuli in the bone microenvironment are essential for the homeostasis and adaptation of the skeleton, with evidence suggesting that disruption of the mechanically-driven bone remodelling process may lead to bone loss. Longitudinal clinical studies have shown the combined use of high-resolution peripheral quantitative computed tomography (HR-pQCT) and micro-finite element analysis can be used to measure load-driven bone remodelling in vivo; however, quantitative markers of bone mechanoregulation and the precision of these analyses methods have not been validated in human subjects. Therefore, this study utilised participants from two cohorts. A same-day cohort (n = 33) was used to develop a filtering strategy to minimise false detections of bone remodelling sites caused by noise and motion artefacts present in HR-pQCT scans. A longitudinal cohort (n = 19) was used to develop bone imaging markers of trabecular bone mechanoregulation and characterise the precision for detecting longitudinal changes in subjects. Specifically, we described local load-driven formation and resorption sites independently using patient-specific odds ratios (OR) and 99 % confidence intervals. Conditional probability curves were computed to link the mechanical environment to the remodelling events detected on the bone surface. To quantify overall mechanoregulation, we calculated a correct classification rate measuring the fraction of remodelling events correctly identified by the mechanical signal. Precision was calculated as root-mean-squared averages of the coefficient of variation (RMS-SD) of repeated measurements using scan-rescan pairs at baseline combined with a one-year follow-up scan. We found no significant mean difference (p < 0.01) between scan-rescan conditional probabilities. RMS-SD was 10.5 % for resorption odds, 6.3 % for formation odds, and 1.3 % for correct classification rates. Bone was most likely to be formed in high-strain and resorbed in low-strain regions for all participants, indicating a consistent, regulated response to mechanical stimuli. For each percent increase in strain, the likelihood of bone resorption decreased by 2.0 ± 0.2 %, and the likelihood of bone formation increased by 1.9 ± 0.2 %, totalling 38.3 ± 1.1 % of strain-driven remodelling events across the entire trabecular compartment. This work provides novel robust bone mechanoregulation markers and their precision for designing future clinical studies.


Assuntos
Reabsorção Óssea , Osso e Ossos , Humanos , Osso e Ossos/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Osteogênese , Reabsorção Óssea/diagnóstico por imagem , Remodelação Óssea , Densidade Óssea/fisiologia , Rádio (Anatomia)/fisiologia
4.
Curr Osteoporos Rep ; 21(3): 266-277, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37079167

RESUMO

PURPOSE OF REVIEW: The purpose of this review is to summarize insights gained by finite element (FE) model-based mechanical biomarkers of bone for in vivo assessment of bone development and adaptation, fracture risk, and fracture healing. RECENT FINDINGS: Muscle-driven FE models have been used to establish correlations between prenatal strains and morphological development. Postnatal ontogenetic studies have identified potential origins of bone fracture risk and quantified the mechanical environment during stereotypical locomotion and in response to increased loading. FE-based virtual mechanical tests have been used to assess fracture healing with higher fidelity than the current clinical standard; here, virtual torsion test data was a better predictor of torsional rigidity than morphometric measures or radiographic scores. Virtual mechanical biomarkers of strength have also been used to deepen the insights from both preclinical and clinical studies with predictions of strength of union at different stages of healing and reliable predictions of time to healing. Image-based FE models allow for noninvasive measurement of mechanical biomarkers in bone and have emerged as powerful tools for translational research on bone. More work to develop nonirradiating imaging techniques and validate models of bone during particularly dynamic phases (e.g., during growth and the callus region during fracture healing) will allow for continued progress in our understanding of how bone responds along the lifespan.


Assuntos
Fraturas Ósseas , Humanos , Análise de Elementos Finitos , Calo Ósseo , Consolidação da Fratura/fisiologia , Estresse Mecânico
5.
Bone ; 166: 116607, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368464

RESUMO

Image quality degradation due to subject motion confounds the precision and reproducibility of measurements of bone density, morphology and mechanical properties from high-resolution peripheral quantitative computed tomography (HR-pQCT). Time-consuming operator-based scoring of motion artefacts remains the gold standard to determine the degree of acceptable motion. However, due to the subjectiveness of manual grading, HR-pQCT scans of poor quality, which cannot be used for analysis, may be accepted upon initial review, leaving patients with incomplete or inaccurate imaging results. Convolutional Neural Networks (CNNs) enable fast image analysis with relatively few pre-processing requirements in an operator-independent and fully automated way for image classification tasks. This study aimed to develop a CNN that can predict motion scores from HR-pQCT images, while also being aware of uncertain predictions that require manual confirmation. The CNN calculated motion scores within seconds and achieved a high F1-score (86.8 ± 2.8 %), with good precision (87.5 ± 2.7 %), recall (86.7 ± 2.9 %) and a substantial agreement with the ground truth measured by Cohen's kappa (κ = 68.6 ± 6.2 %); motion scores of the test dataset were predicted by the algorithm with comparable accuracy, precision, sensitivity and agreement as by the operators (p > 0.05). This post-processing approach may be used to assess the effect of motion scores on microstructural analysis and can be immediately implemented into clinical protocols, significantly reducing the time for quality assessment and control of HR-pQCT scans.


Assuntos
Redes Neurais de Computação , Tomografia Computadorizada por Raios X , Humanos , Reprodutibilidade dos Testes , Movimento (Física) , Tomografia Computadorizada por Raios X/métodos , Artefatos
6.
Curr Osteoporos Rep ; 20(6): 398-409, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36190648

RESUMO

PURPOSE OF REVIEW: Diabetes mellitus is defined by elevated blood glucose levels caused by changes in glucose metabolism and, according to its pathogenesis, is classified into type 1 (T1DM) and type 2 (T2DM) diabetes mellitus. Diabetes mellitus is associated with multiple degenerative processes, including structural alterations of the bone and increased fracture risk. High-resolution peripheral computed tomography (HR-pQCT) is a clinically applicable, volumetric imaging technique that unveils bone microarchitecture in vivo. Numerous studies have used HR-pQCT to assess volumetric bone mineral density and microarchitecture in patients with diabetes, including characteristics of trabecular (e.g. number, thickness and separation) and cortical bone (e.g. thickness and porosity). However, study results are heterogeneous given different imaging regions and diverse patient cohorts. RECENT FINDINGS: This meta-analysis assessed T1DM- and T2DM-associated characteristics of bone microarchitecture measured in human populations in vivo reported in PubMed- and Embase-listed publications from inception (2005) to November 2021. The final dataset contained twelve studies with 516 participants with T2DM and 3067 controls and four studies with 227 participants with T1DM and 405 controls. While T1DM was associated with adverse trabecular characteristics, T2DM was primarily associated with adverse cortical characteristics. These adverse effects were more severe at the radius than the load-bearing tibia, indicating increased mechanical loading may compensate for deleterious bone microarchitecture changes and supporting mechanoregulation of bone fragility in diabetes mellitus. Our meta-analysis revealed distinct predilection sites of bone structure aberrations in T1DM and T2DM, which provide a foundation for the development of animal models of skeletal fragility in diabetes and may explain the uncertainty of predicting bone fragility in diabetic patients using current clinical algorithms.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/metabolismo , Estudos Transversais , Rádio (Anatomia) , Densidade Óssea/fisiologia , Tomografia Computadorizada por Raios X , Absorciometria de Fóton
7.
Sci Rep ; 12(1): 17960, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289391

RESUMO

High resolution peripheral quantitative computed tomography (HR-pQCT) provides methods for quantifying volumetric bone mineral density and microarchitecture necessary for early diagnosis of bone disease. When combined with a longitudinal imaging protocol and finite element analysis, HR-pQCT can be used to assess bone formation and resorption (i.e., remodeling) and the relationship between this remodeling and mechanical loading (i.e., mechanoregulation) at the tissue level. Herein, 25 patients with a contralateral distal radius fracture were imaged with HR-pQCT at baseline and 9-12 months follow-up: 16 patients were prescribed vitamin D3 with/without calcium supplement based on a blood biomarker measures of bone metabolism and dual-energy X-ray absorptiometry image-based measures of normative bone quantity which indicated diminishing (n = 9) or poor (n = 7) bone quantity and 9 were not. To evaluate the sensitivity of this imaging protocol to microstructural changes, HR-pQCT images were registered for quantification of bone remodeling and image-based micro-finite element analysis was then used to predict local bone strains and derive rules for mechanoregulation. Remodeling volume fractions were predicted by both average values of trabecular and cortical thickness and bone mineral density (R2 > 0.8), whereas mechanoregulation was affected by dominance of the arm and group classification (p < 0.05). Overall, longitudinal, extended HR-pQCT analysis enabled the identification of changes in bone quantity and quality too subtle for traditional measures.


Assuntos
Densidade Óssea , Cálcio , Humanos , Absorciometria de Fóton/métodos , Densidade Óssea/fisiologia , Tomografia Computadorizada por Raios X/métodos , Colecalciferol , Tíbia/fisiologia
8.
Front Bioeng Biotechnol ; 10: 901720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910035

RESUMO

In silico simulations aim to provide fast, inexpensive, and ethical alternatives to years of costly experimentation on animals and humans for studying bone remodeling, its deregulation during osteoporosis and the effect of therapeutics. Within the varied spectrum of in silico modeling techniques, bone cell population dynamics and agent-based multiphysics simulations have recently emerged as useful tools to simulate the effect of specific signaling pathways. In these models, parameters for cell and cytokine behavior are set based on experimental values found in literature; however, their use is currently limited by the lack of clinical in vivo data on cell numbers and their behavior as well as cytokine concentrations, diffusion, decay and reaction rates. Further, the settings used for these parameters vary across research groups, prohibiting effective cross-comparisons. This review summarizes and evaluates the clinical trial literature that can serve as input or validation for in silico models of bone remodeling incorporating cells and cytokine dynamics in post-menopausal women in treatment, and control scenarios. The GRADE system was used to determine the level of confidence in the reported data, and areas lacking in reported measures such as binding site occupancy, reaction rates and cell proliferation, differentiation and apoptosis rates were highlighted as targets for further research. We propose a consensus for the range of values that can be used for the cell and cytokine settings related to the RANKL-RANK-OPG, TGF-ß and sclerostin pathways and a Levels of Evidence-based method to estimate parameters missing from clinical trial literature.

9.
Front Bioeng Biotechnol ; 9: 677985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249883

RESUMO

Patients at high risk of fracture due to metabolic diseases frequently undergo long-term antiresorptive therapy. However, in some patients, treatment is unsuccessful in preventing fractures or causes severe adverse health outcomes. Understanding load-driven bone remodelling, i.e., mechanoregulation, is critical to understand which patients are at risk for progressive bone degeneration and may enable better patient selection or adaptive therapeutic intervention strategies. Bone microarchitecture assessment using high-resolution peripheral quantitative computed tomography (HR-pQCT) combined with computed mechanical loads has successfully been used to investigate bone mechanoregulation at the trabecular level. To obtain the required mechanical loads that induce local variances in mechanical strain and cause bone remodelling, estimation of physiological loading is essential. Current models homogenise strain patterns throughout the bone to estimate load distribution in vivo, assuming that the bone structure is in biomechanical homoeostasis. Yet, this assumption may be flawed for investigating alterations in bone mechanoregulation. By further utilising available spatiotemporal information of time-lapsed bone imaging studies, we developed a mechanoregulation-based load estimation (MR) algorithm. MR calculates organ-scale loads by scaling and superimposing a set of predefined independent unit loads to optimise measured bone formation in high-, quiescence in medium-, and resorption in low-strain regions. We benchmarked our algorithm against a previously published load history (LH) algorithm using synthetic data, micro-CT images of murine vertebrae under defined experimental in vivo loadings, and HR-pQCT images from seven patients. Our algorithm consistently outperformed LH in all three datasets. In silico-generated time evolutions of distal radius geometries (n = 5) indicated significantly higher sensitivity, specificity, and accuracy for MR than LH (p < 0.01). This increased performance led to substantially better discrimination between physiological and extra-physiological loading in mice (n = 8). Moreover, a significantly (p < 0.01) higher association between remodelling events and computed local mechanical signals was found using MR [correct classification rate (CCR) = 0.42] than LH (CCR = 0.38) to estimate human distal radius loading. Future applications of MR may enable clinicians to link subtle changes in bone strength to changes in day-to-day loading, identifying weak spots in the bone microstructure for local intervention and personalised treatment approaches.

10.
JBMR Plus ; 5(6): e10493, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34189382

RESUMO

Clinical evaluation of fracture healing is often limited to an assessment of fracture bridging from radiographic images, without consideration for other aspects of bone quality. However, recent advances in HRpQCT offer methods to accurately monitor microstructural bone remodeling throughout the healing process. In this study, local bone formation and resorption were investigated during the first year post fracture in both the fractured (n = 22) and contralateral (n = 19) radii of 34 conservatively treated patients (24 female, 10 male) who presented with a unilateral radius fracture at the Innsbruck University Hospital, Austria. HRpQCT images and clinical metrics were acquired at six time points for each patient. The standard HRpQCT image acquisition was captured for all radii, with additional distal and proximal image acquisitions for the fractured radii. Measured radial bone densities were isolated with a voxel-based mask and images were rigidly registered to images from the previous imaging session using a pyramid-based approach. From the registered images, bone formation and resorption volume fractions were quantified for multiple density-based thresholds and compared between the fractured and contralateral radius and relative to demographics, bone morphometrics, and fracture metrics using regression. Compared with the contralateral radius, both bone formation and resorption were significantly increased in the fractured radius throughout the study for nearly all evaluated thresholds. Higher density cortical bone formation continually increased throughout the duration of the study and was significantly greater than resorption during late-stage healing in both the fractured and intact regions of the radius. With the small and diverse study population, only weak relationships between fracture remodeling and patient-specific parameters were unveiled. However this study provides methods for the analysis of local bone remodeling during fracture healing and highlights relevant considerations for future studies, specifically that remodeling postfracture is likely to continue beyond 12-months postfracture. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

11.
Bone ; 147: 115930, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33753277

RESUMO

Radius fractures are among the most common fracture types; however, there is limited consensus on the standard of care. A better understanding of the fracture healing process could help to shape future treatment protocols and thus improve functional outcomes of patients. High-resolution peripheral quantitative computed tomography (HR-pQCT) allows monitoring and evaluation of the radius on the micro-structural level, which is crucial to our understanding of fracture healing. However, current radius fracture studies using HR-pQCT are limited by the lack of automated contouring routines, hence only including small number of patients due to the prohibitively time-consuming task of manually contouring HR-pQCT images. In the present study, a new method to automatically contour images of distal radius fractures based on 3D morphological geodesic active contours (3D-GAC) is presented. Contours of 60 HR-pQCT images of fractured and conservatively treated radii spanning the healing process up to one year post-fracture are compared to the current gold standard, hand-drawn 2D contours, to assess the accuracy of the algorithm. Furthermore, robustness was established by applying the algorithm to HR-pQCT images of intact radii of 73 patients and comparing the resulting morphometric indices to the gold standard patient evaluation including a threshold- and dilation-based contouring approach. Reproducibility was evaluated using repeat scans of intact radii of 19 patients. The new 3D-GAC approach offers contours within inter-operator variability for images of fractured distal radii (mean Dice score of 0.992 ± 0.005 versus median operator Dice score of 0.992 ± 0.006). The generated contours for images of intact radii yielded morphometric indices within the in vivo reproducibility limits compared to the current gold standard. Additionally, the 3D-GAC approach shows an improved robustness against failure (n = 5) when dealing with cortical interruptions, fracture fragments, etc. compared with the automatic, default manufacturer pipeline (n = 40). Using the 3D-GAC approach assures consistent results, while reducing the need for time-consuming hand-contouring.


Assuntos
Fraturas do Rádio , Densidade Óssea , Consolidação da Fratura , Humanos , Rádio (Anatomia)/diagnóstico por imagem , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X
12.
J Mech Behav Biomed Mater ; 115: 104253, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33360160

RESUMO

Methods used to evaluate bone mechanical properties vary widely depending on the motivation and environment of individual researchers, clinicians, and industries. Further, the innate complexity of bone makes validation of each method difficult. Thus, the purpose of the present research was to quantify methodological error of the most common methods used to predict long-bone bending stiffness, more specifically, flexural rigidity (EI). Functional testing of a bi-material porcine bone surrogate, developed in a previous study, was conducted under four-point bending test conditions. The bone surrogate was imaged using computed tomography (CT) with an isotropic voxel resolution of 0.625 mm. Digital image correlation (DIC) of the bone surrogate was used to quantify the methodological error between experimental, analytical, and computational methods used to calculate EI. These methods include the application of Euler Bernoulli beam theory to mechanical testing and DIC data; the product of the bone surrogate composite bending modulus and second area moment of inertia; and finite element analysis (FEA) using computer-aided design (CAD) and CT-based geometric models. The methodological errors of each method were then compared. The results of this study determined that CAD-based FEA was the most accurate determinant of bone EI, with less than five percent difference in EI to that of the DIC and consistent reproducibility of the measured displacements for each load increment. CT-based FEA was most accurate for axial strains. Analytical calculations overestimated EI and mechanical testing was the least accurate, grossly underestimating flexural rigidity of long-bones.


Assuntos
Osso e Ossos , Tomografia Computadorizada por Raios X , Fenômenos Biomecânicos , Análise de Elementos Finitos , Reprodutibilidade dos Testes
13.
Bone Rep ; 13: 100711, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33392364

RESUMO

High-resolution peripheral quantitative computed-tomography (HR-pQCT) has the potential to become a powerful clinical assessment and diagnostic tool. Given the recent improvements in image resolution, from 82 to 61 µm, this technology may be used to accurately quantify in vivo bone microarchitecture, a key biomarker of degenerative bone diseases. However, computational methods to assess bone microarchitecture were developed for micro computed tomography (micro-CT), a higher-resolution technology only available for ex vivo studies, and validation of these computational analysis techniques against the gold-standard micro-CT has been inconsistent and incomplete. Herein, we review methods for segmentation of bone compartments and microstructure, quantification of bone morphology, and estimation of mechanical strength using finite-element analysis, highlighting the need throughout for improved standardization across the field. Studies have relied on homogenous datasets for validation, which does not allow for robust comparisons between methods. Consequently, the adaptation and validation of novel segmentation approaches has been slow to non-existent, with most studies still using the manufacturer's segmentation for morphometric analysis despite the existence of better performing alternative approaches. The promising accuracy of HR-pQCT for capturing morphometric indices is overshadowed by considerable variability in outcomes between studies. For finite element analysis (FEA) methods, the use of disparate material models and FEA tools has led to a fragmented ability to assess mechanical bone strength with HR-pQCT. Further, the scarcity of studies comparing 62 µm HR-pQCT to the gold standard micro-CT leaves the validation of this imaging modality incomplete. This review revealed that without standardization, the capabilities of HR-pQCT cannot be adequately assessed. The need for a public, extendable, heterogeneous dataset of HR-pQCT and corresponding gold-standard micro-CT images, which would allow HR-pQCT users to benchmark existing and novel methods and select optimal methods depending on the scientific question and data at hand, is now evident. With more recent advancements in HR-pQCT, the community must learn from its past and provide properly validated technologies to ensure that HR-pQCT can truly provide value in patient diagnosis and care.

14.
J Mech Behav Biomed Mater ; 88: 346-351, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30199837

RESUMO

The high incidence of osteoporosis and related fractures demands for the use and development of methods capable of detecting changes in bone mechanical properties. The most common clinical and laboratory methods used to detect changes in bone mechanical properties, such as stiffness, strength, or flexural rigidity, include: mechanical testing, medical imaging, medical image-based analytical calculations, and medical image-based finite element analysis. However, the innate complexity of bone makes validation of the results from each method difficult. The current study presents the design, fabrication, and functional testing of a bi-material and computed tomography scan compatible bone-surrogate which provides consistent reproducible mechanical properties for methodological evaluation of experimental, analytical, and computational bone bending stiffness prediction methods.


Assuntos
Biomimética/métodos , Osso e Ossos/fisiologia , Fenômenos Mecânicos , Fenômenos Biomecânicos , Biomimética/instrumentação , Análise de Elementos Finitos , Teste de Materiais , Osteoporose , Tomografia Computadorizada por Raios X
15.
J Vet Dent ; 33(3): 151-156, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-28327065

RESUMO

The reported failure rate for full veneer crowns in dogs is suboptimal, particularly in teeth with naturally poor retentive features such as the maxillary fourth premolar tooth of dogs. Although the data regarding crown retention on the maxillary fourth premolar in dogs are limited, there are data that suggest the crown failure rate could be similar to that of the canine tooth. Thus, methods to improve retentive features of the preparation design should be pursued. The objective of the present study is to quantify the influence of axial grooves on the dislodgment resistance of full veneer metal crowns in dogs. Crown dislodgment testing was performed on cast alloy dies of the maxillary fourth premolar tooth with unfavorable retentive features prepared with and without axial grooves, to quantify the difference in force required to dislodge a cemented full veneer crown. The force required to cause crown dislodgment was recorded for each crown. Statistical analysis revealed a significant increase ( P < .001) in the force required for crown dislodgment in teeth prepared with axial grooves compared to those prepared without axial grooves.


Assuntos
Dente Pré-Molar/cirurgia , Retenção em Prótese Dentária/veterinária , Cães/cirurgia , Preparo Prostodôntico do Dente/veterinária , Animais , Coroas , Retenção em Prótese Dentária/instrumentação , Retenção em Prótese Dentária/métodos
16.
J Vet Dent ; 33(3): 146-150, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-28327073

RESUMO

The reported failure rate for full veneer crowns of canine teeth of dogs is suboptimal, particularly in teeth with naturally poor retentive features, such as those with low height/diameter (H/D) ratios or high convergence angles (CAs). The objective of the present study was to evaluate the application of axial grooves in an effort to develop a crown preparation design that enhances the retention of full veneer crowns in dogs. Crown dislodgment testing was performed on cast alloy dies of canine teeth with unfavorable retention features (low H/D and high CA) prepared with (n = 14) and without axial grooves (n = 15) to evaluate the force required to dislodge a cemented full veneer crown. The crown/die units were secured within a universal testing machine and a load was applied at the 45° oblique direction from distal to mesial to replicate the vector encountered during biting-pulling action. The maximum force required to cause crown dislodgment was recorded for each crown. Statistical analysis revealed a significant increase in force required for crown dislodgment when axial grooves were included in the crown preparation design ( P < .001). Crown retention is improved in canine teeth with otherwise poor retention features when axial grooves are made in the labial and palatal/lingual walls during crown preparation.


Assuntos
Retenção em Prótese Dentária/veterinária , Odontologia/veterinária , Cães/cirurgia , Dente/cirurgia , Animais , Cimentação , Coroas , Dente Canino , Odontologia/métodos , Metais
17.
Front Vet Sci ; 2: 31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26664960

RESUMO

OBJECTIVE: This study was performed in order to determine if mathematical modeling of the canine teeth in dogs could be utilized to provide an accurate and reliable estimation of crown surface area that could be used in both a research and a clinical setting. MATERIALS AND METHODS: Actual surface area (aSA) calculations for 32 stone dies of clinical crown preparations were acquired utilizing a tridimensional (3D) laser scanner and 3D computer-aided design and manufacturing (CAD/CAM) software applications. These calculations were used as a control. Seventeen unique mathematical models from eight geometric shapes were used to calculate estimated surface area (eSA) of each stone die. Linear association and agreement between eSA and aSA calculations were assessed with multiple statistical methods. RESULTS: All methods of eSA showed a significant linear association with aSA. Five of the mathematical models [right elliptical frustum (H3), right elliptical cone (G3), right pyramidal cone (A3), right circular frustum (F2), and right circular cone (E1)] were superior to the other 12 models. CONCLUSION: The H3 mathematical model based on the right elliptical frustum provided the most accurate estimate of crown surface area of dog teeth. However, H3 requires the use of laser scans and a 3D CAD software program. As a result, this model would be recommended for research applications. The E1 mathematical model was similar in accuracy to H3 and, given it requires only two measurements and a comparatively simple equation for calculation, this method would be recommended for clinical chair-side use.

18.
J Biomech ; 48(2): 310-7, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25498366

RESUMO

In the United States, approximately eight million osseous fractures are reported annually, of which 5-10% fail to create a bony union. Osteoblast-specific deletion of the gene Pten in mice has been found to stimulate bone growth and accelerate fracture healing. Healing rates at four weeks increased in femurs from Pten osteoblast conditional knock-out mice (Pten-CKO) compared to wild-type mice (WT) of the same genetic strain as measured by an increase in mechanical stiffness and failure load in four-point bending tests. Preceding mechanical testing, each femur was imaged using a Skyscan 1172 micro-computed tomography (µCT) scanner (Skyscan, Kontich, Belgium). The present study used µCT image-based analysis to test the hypothesis that the increased femoral fracture force and stiffness in Pten-CKO were due to greater section properties with the same effective material properties as that of the WT. The second moment of area and section modulus were computed in ImageJ 1.46 (National Institutes of Health) and used to predict the effective flexural modulus and the stress at failure for fourteen pairs of intact and callus WT and twelve pairs of intact and callus Pten-CKO femurs. For callus and intact femurs, the failure stress and tissue mineral density of the Pten-CKO and WT were not different; however, the section properties of the Pten-CKO were more than twice as large 28 days post-fracture. It was therefore concluded, when the gene Pten was conditionally knocked-out in osteoblasts, the resulting increased bending stiffness and force to fracture were due to increased section properties.


Assuntos
Fraturas do Fêmur/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Consolidação da Fratura , Fenômenos Mecânicos , Osteoblastos/metabolismo , PTEN Fosfo-Hidrolase/deficiência , Microtomografia por Raio-X , Animais , Fenômenos Biomecânicos , Densidade Óssea , Calo Ósseo/metabolismo , Fraturas do Fêmur/metabolismo , Fraturas do Fêmur/patologia , Fraturas do Fêmur/fisiopatologia , Fêmur/metabolismo , Fêmur/patologia , Fêmur/fisiopatologia , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Knockout , Tamanho do Órgão , PTEN Fosfo-Hidrolase/genética
19.
PLoS One ; 8(5): e63857, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23675511

RESUMO

The failure of an osseous fracture to heal (development of a non-union) is a common and debilitating clinical problem. Mice lacking the tumor suppressor Pten in osteoblasts have dramatic and progressive increases in bone volume and density throughout life. Since fracture healing is a recapitulation of bone development, we investigated the process of fracture healing in mice lacking Pten in osteoblasts (Ocn-cre(tg/+;)Pten(flox/flox) ). Mid-diaphyseal femoral fractures induced in wild-type and Ocn-cre(tg/+;)Pten(flox/flox) mice were studied via micro-computed tomography (µCT) scans, biomechanical testing, histological and histomorphometric analysis, and protein expression analysis. Ocn-cre(tg/+;)Pten(flox/flox) mice had significantly stiffer and stronger intact bones relative to controls in all cohorts. They also had significantly stiffer healing bones at day 28 post-fracture (PF) and significantly stronger healing bones at days 14, 21, and 28 PF. At day 7 PF, the proximal and distal ends of the Pten mutant calluses were more ossified. By day 28 PF, Pten mutants had larger and more mineralized calluses. Pten mutants had improved intramembranous bone formation during healing originating from the periosteum. They also had improved endochondral bone formation later in the healing process, after mature osteoblasts are present in the callus. Our results indicate that the inhibition of Pten can improve fracture healing and that the local or short-term use of commercially available Pten-inhibiting agents may have clinical application for enhancing fracture healing.


Assuntos
Calo Ósseo/fisiologia , Fêmur/lesões , Consolidação da Fratura/genética , Osteoblastos/metabolismo , Osteogênese/genética , PTEN Fosfo-Hidrolase/genética , Animais , Calo Ósseo/diagnóstico por imagem , Calcificação Fisiológica/fisiologia , Diferenciação Celular , Fraturas do Fêmur/diagnóstico por imagem , Fraturas do Fêmur/patologia , Deleção de Genes , Camundongos , Camundongos Transgênicos , Osteoblastos/citologia , PTEN Fosfo-Hidrolase/deficiência , Radiografia , Recuperação de Função Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...